Research Group Körber
Department of Neuroanatomy
Neuroanatomy of sensory systems

Auditory signal processing and the mechanisms of high frequency neurotransmission
We are interested in the processing of auditory signals in the auditory brainstem and the inferior colliculus and how this influences auditory perception and behaviour.
Sounds that arrive at the ear, are transformed from mechanical waves to electrical signals in the inner ear. These signals are passed on to multiple different cell types in the cochlear nuclei of the auditory brainstem. Each of these cell types is responsive to different aspects of the incoming signal and acts as the first station of a specialized circuit for processing a certain type of information, i.e., volume or the location of a sound source. This processing requires high frequency, ultra-precise signal transduction. Therefore, synapses of the auditory brainstem are capable of transmitting information at hundreds of Hertz with µ-second precision. We are interested in the synaptic mechanisms that enable auditory brainstem neurons to perform such an extraordinary task, both on the structural and the functional level. Furthermore, our research focuses on how the outcome of these brainstem circuits is processed in the inferior colliculus, representing the auditory midbrain, and how this influences the perception of sounds and subsequently the animal's behaviour. Therefore, we use an array of different techniques from electrophysiology, light and electron microscopy to modern in vivo approaches such as, viral gene transfer, optogenetic stimulation and calcium imaging and combine them with behavioural testing.
Neuronal ensembles of reward seeking
A second focus of the lab lies on the investigation of neuronal ensembles during reward seeking behavior. Neuronal ensembles are groups of neurons in a given brain region that are coherently active under a certain condition. We are specifically interested in how these neuronal ensembles differ across brain regions depending on the reward expected. Therefore, we employ a concomitant self-administration task in which the animal is rewarded either with a sweet tasting solution or alcohol, which serve as a natural and a drug reward, respectively. These experiments aim at a better understanding of the neuronal mechanisms of substance-abuse disorders and at new ways to treat them.
Group Member
contact information
- telephone: +49 551 3967035
- e-mail address: christoph.koerber(at)med.uni-goettingen.de
- location: Kreuzbergring 36, 1. OG 1.141
contact information
- telephone: +49 551 3967034
- e-mail address: janine.reinert(at)med.uni-goettingen.de
- location: Kreuzbergring 36, 1. OG 1.140
Publications
Lessle, S., Ebbers, L., Dörflinger, Y., Hoppe, S., Kaiser, M., Nothwang, H. G. Körber, C. (2024) Maintenance of a central high frequency synapse in the absence of synaptic activity. Front. Cell. Neurosci. 18:1404206.
Saber, M. H., Kaiser, M., Rüttiger, L. Körber, C. (2024) Effects of the two-pore potassium channel subunit Task5 on neuronal function and signal processing in the auditory brainstem. Front. Cell. Neurosci. 18:1463816.
Gan, Z., Gangadharan, V., Liu, S., Körber, C., Tan, L. L., Li, H., Oswald, M. J., Kang, J., Martin-Cortecero, J., Männich, D., Groh, A., Kuner, T., Wieland, S. Kuner, R. (2022) Layer-specific pain relief pathways originating from primary motor cortex. Science 378:1336-1343.
Paksoy, A., Hoppe, S., Dörflinger, Y., Horstmann, H., Sätzler, K. Körber, C. (2022) Effects of the clathrin inhibitor Pitstop-2 on synaptic vesicle recycling at a central synapse in vivo. Front. Synaptic Neurosci. 14:1056308.
Körber, C. Sommer, W. H. (2022) From ensembles to meta-ensembles:Specific reward encoding bycorrelated network activity. Front. Behav. Neurosci. 16:977474.
Krohs, C. *, Körber, C. *, Ebbers, L., Altaf, F., Hollje, G., Hoppe, S., Dörflinger, Y., Prosser, H. M. Nothwang, H. G. (2021) Loss of miR-183/96 alters synaptic strength via pre- and postsynaptic mechanisms at a central synapse. J. Neurosci. 41:6796-6811. * equal contribution
Wandres, M., Pfarr, S., Molnár, B., Schöllkopf, U., Ercsey-Ravasz, M., Sommer, W. H. Körber, C. (2021) Alcohol and sweet reward are encoded by distinct meta-ensembles. Neuropharmacology 195:108496.
Darwisch, W., von Spangenberg, M., Lehmann, J., Singin, Ö., Deubert, G., Kühl, S., Roos, J., Horstmann, H., Körber, C., Hoppe, S., Zheng, H., Kuner, T., Pras-Raves, M. L., van Kampen, A. H. C., Waterham, H., Schwarz, K. V., Okun, J. G., Schultz, C. and Vaz, F. M. Islinger, M. (2020) The cerebellar phenotype in ACBD5-deficient mice is associated with unexpected alterations in cellular lipid homeostasis. Commun. Biol. 3:173.
Venkataramani, V., Tanev, D. I., Strahle, C., Studier-Fischer, A., Fankhauser, L., Kessler, T., Körber, C., Kardorff, M., Ratliff, M., Xie, R., Horstmann, H., Messer, M., Paik, S., Knabbe, J., Sahm, F., Kurz, F. T., Acikgöz, A., Herrmannsdörfer, F., Osswald, M., Agarwal, A., Bergles, D. E., Chalmers, A., Miletic, H., Turcan, S., Mawrin, C., Hänggi, D., Liu, H. K., Wick, W., Winkler, F. Kuner, T. (2019) Excitatory glutamatergic synapses between neurons and glioma cells drive brain tumour progression. Nature 573:532-538.
Pfarr, S., Schaaf, L., Reinert, J. K., Paul, E., Hermannsdörfer, F., Roßmanith, M., Kuner, T., Hansson, A. C., Spanagel, R., Körber, C. Sommer, W. H. (2018) Choice for drug or natural reward engages largely overlapping neuronal ensembles in the infralimbic prefrontal cortex. J. Neurosci. 38:3507-3519.
Parthier, D., Kuner, T. Körber, C. (2018) The presynaptic scaffolding protein Piccolo organizes the readily releasable pool at the calyx of Held. J. Physiol. 596:1485-1499.
Körber, C. Kuner, T. (2016) Molecular machines regulating the release probability of synaptic vesicles at the active zone. Front. Synaptic Neurosci. 8:5
Körber, C., Horstmann, H., Venkataramani, V., Herrmannsdörfer, F., Kremer, T., Kaiser, M., Schwenger, D.B., Ahmed, S., Dean, C., Dresbach, T. Kuner, T. (2015) Modulation of presynaptic release probability by the vertebrate-specific protein Mover. Neuron 87:521-33.
Kiesgen, S., Arndt, M.A.E., Körber, C., Arnold, U., Weber, T., Halama, N., Keller, A., Bötticher, B., Schlegelmilch, A., Liebers, N., Cremer, M., Herold-Mende, C., Dyckhoff, G., Federspil, P.A., Jensen, A.D., Jäger, D., Kontermann, R.E., Mier, W. Krauss, J. (2015) An EGF receptor targeting Ranpirnase-diabody fusion protein mediates potent antitumour activity in vitro and in vivo. Cancer Lett. 357:364-373.
Körber, C., Dondzillo, A., Eisenhardt, G., Herrmannsdörfer, F., Wafzig, O. Kuner, T. (2014) Gene expression profile during functional maturation of a central mammalian synapse. Eur. J. Neurosci. 40:2867-2877.
Pachernegg, S., Joshi, I., Muth-Köhne, E., Pahl, S., Münster, Y., Terhag, J., Karus, M., Werner, M., Ma-Högemeier, Z.-L., Körber, C., Grunwald, T., Faissner, A., Wiese, S. Hollmann, M. (2013) Undifferentiated embryonic stem cells express ionotropic glutamate receptor mRNAs. Front. Cell. Neurosci. 7:241.
Körber, C.*, Horstmann, H.*, Sätzler, K. Kuner, T. (2012) Endocytic structures and synaptic vesicle recycling at a central synapse in awake rats. Traffic 13:1601-1611. * equal contribution
Körber, C., Richter, A., Kaiser, M., Schlicksupp, A., Mükusch, S., Kuner, T., Kirsch, J. Kuhse, J. (2012) Effects of distinct collybistin isoforms on the formation of GABAergic synapses in hippocampal neurons. Mol. Cell. Neurosci. 50:250-259.
Horstmann, H., Körber, C., Sätzler, K., Aydin, D. Kuner, T. (2012) Serial section scanning electron microscopy (S3EM) on silicon wafers for ultra-structural volume imaging of cells and tissues. PLoS One 7:e35172.
Denker, A., Bethani, I., Kröhnert, K., Körber, C., Horstmann, H., Wilhelm, B.G., Barysch, S.V., Kuner, T., Neher, E. Rizzoli, S.O. (2011) A small pool of vesicles maintains synaptic activity in vivo.Proc. Natl. Acad. Sci. USA 108:17177-17182.
Ma-Högemeier, Z.-L., Körber, C., Werner, M., Racine, D., Muth-Köhne, E., Tapken, D. Hollmann, M. (2010) Oligomerization in the endoplasmic reticulum and intracellular trafficking of kainate receptors are subunit-dependent but not editing-dependent. J. Neurochem. 113:1403-1415.
Wittenmayer, N., Körber, C., Liu, H., Kremer, T., Varoqueaux, F., Chapman, E.R., Brose, N., Kuner, T. Dresbach, T. (2009) Postsynaptic Neuroligin1 regulates presynaptic maturation. Proc. Natl. Acad. Sci. USA 106:13564-13569.
Schmid, S.M., Körber, C., Herrmann, S., Werner, M. Hollmann, M. (2007) A domain linking the AMPA receptor agonist binding site to the ion pore controls gating and causes lurcherproperties when mutated. J. Neurosci. 27:12230-12241.
Körber, C., Werner, M., Kott, S., Ma, Z.-L. Hollmann, M. (2007) The AMPA receptor-regularoty proteing4 is a more effective modulator of AMPA receptor function than stargazin (g2). J. Neurosci. 27:8442-8447.
Körber, C., Werner, M., Hoffmann, J., Sager, C., Tietze, M., Schmid, S.M., Kott, S. Hollmann, M. (2007) Stargazin interaction witha-Amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors is critically dependent on the amino acid at the narrow constriction of the ion channel. J. Biol. Chem. 282:18758-66.
Kott, S., Werner, M., Körber, C. Hollmann, M. (2007) Electrophysiological properties of AMPA receptors are differentially modulated depending on the associated member of the TARP family. J. Neurosci. 27:3780-3789.
Ma, Z.-L., Werner, M., Körber, C., Joshi, I., Hamad, M., Wahle, P. Hollmann, M. (2007) Quantitative analysis of co-transfection efficiencies in studies of ionotropic glutamate receptors. J. Neurosci. Res. 85:99-115.